Earthquake Behaviour of Buildings by C. V. R. Murty, Rupen Goswami, A.R. Vijayanarayanan, Vipul V. Mehta



Earthquake Behaviour of Buildings by C. V. R. Murty, Rupen Goswami, A.R. Vijayanarayanan, Vipul V. Mehta


 Earthquake Behaviour of Buildings by C. V. R. Murty, Rupen Goswami, A.R. Vijayanarayanan, Vipul V. Mehta
The size of the above PDF is 5MB

Contents

1     Earthquake-Resistant Buildings
    1.1 Basics of Earthquake-Resistant Design and Construction
    1.2 Basic Aspects of Seismic Design
    1.3 The Four Virtues of Earthquake Resistant Buildings
        1.3.1 Characteristics of Buildings
              (a) Seismic Structural Configuration
              (b) Structural Stiffness, Strength and Ductility
        1.3.2 What are the Four Virtues?
              (a) Who Controls the Four Virtues?
              (b) How to Achieve the Four Virtues?
    1.4 Earthquake Demand versus Earthquake Capacity
    1.5 Force-based Design to Displacement-based Design
    Earthquake Demand on Buildings
    2.1 Seismic Design Force
    2.2 Dynamic Characteristics of Buildings
        2.2.1 Natural Period
              (a) Fundamental Natural Period of Building
              (b) Factors influencing Natural Period
                        (1) Effect of Stiffness
                        (2) Effect of Mass
                        (3) Effect of Building Height
                        (4) Effect of Column Orientation
                        (5) Effect of Unreinforced Masonry Infill Walls in RC Frames
                        (6) Effect of Cracked Sections on Analysis of RC Frames
              (c) Design Practice
        2.2.2 Mode Shape
              (a) Fundamental Mode Shape of Oscillation
              (b) Factors influencing Mode Shapes
                        (1) Effect of Flexural Stiffness of Structural Elements
                        (2) Effect of Axial Stiffness of Vertical Members
                        (3) Effect of Degree of Fixity at Member Ends
                        (4) Effect of Building Height
                        (5) Effect of Unreinforced Masonry Infill Walls in RC Frames
              (d) Design Practice
        2.2.3 Damping
    2.3 Ground Motion Characteristics
        2.3.1 Accelerograms
        2.3.2 Response Spectrum of a Ground Motion
              (a) Acceleration Response Spectrum of a Ground Motion
              (b) Design Practice
    Earthquake Capacity of Buildings – Elastic Behaviour
    3.1 Elastic Behaviour
    3.2 Configuration
        3.2.1 Overall Geometry
              (a) Plan Shape
                        (1) Buildings with different shapes, but same Plan Area
                        (2) Buildings with different projections, but same Plan Shape
              (b) Plan Aspect Ratio
                        (1) Buildings with distributed LLRS in plan and cut-outs
                        (2) Buildings with regular plan shape, but of large plan size and with cut-outs
              (c) Slenderness Ratio
        3.2.2 Structural Systems and Components
              (a) Moment Frame Systems
              (b) Structural Wall-Frame Systems
              (c) Braced Frame Systems
              (d) Tube System
              (e) Tube-in-Tube and Bundled Tube Systems
              (f) Flat Slab Building
        3.2.3 Load Paths
              (a) Frames
              (b) Structural Walls
    3.3 Mass
        3.3.1 Mass Asymmetry in Plan
        3.3.2 Mass Irregularity in Elevation
    3.4 Initial Stiffness
        3.4.1 Stiffness Irregularity in Plan
        3.4.2 Stiffness Irregularity in Elevation
              (a) Open or Flexible Storey in Buildings
              (b) Plinth and Lintel Beams in Buildings
              (c) Buildings on Slope
              (d) Set-back and Step-back Buildings
        3.4.3 Adjacency
        3.4.4 Soil Flexibility
    Earthquake Capacity of Buildings – Inelastic Behaviour
    4.1 Inelastic Behaviour
    4.2 Strength
        4.2.1 Strength Hierarchy
              (a) Beam-Column Joints
        4.2.2 Structural Plan Density
        4.2.3 Strength Asymmetry in Plan
        4.2.4 Strength Discontinuity in Elevation
              (a) Open/ Flexible/ Weak Storeys in a Building
              (b) Discontinuous Structural Walls in a Building
              (c) Short Column Effect
    4.3 Ductility
        4.3.1 Definitions of Ductility
              (a) Contributors to Ductility in Reinforced Concrete Buildings
              (b) Achieving Ductility in Reinforced Concrete Buildings
              (c) Assessing Ductility available in Buildings
        4.3.2 Strength Provided in Building and Overall Ductility Demand
        4.3.3 Capacity Design of Buildings
              (a) Displacement Loading
              (b) Capacity Design Concept
        4.3.4 Distribution of Damage in Buildings
              (a) The Open Ground Storey Buildings
              (b) Strong Column - Weak Beam Design
              (c) Excessive ductility demands owing to Pounding from Adjacent Building
              (d) Adjacent Part of same Building
    4.4 Modeling of Buildings
5     Earthquake-Resistant Design of Buildings
    5.1 Introduction
    5.2 Earthquake-Resistant Design Methods
    5.3 Earthquake-Resistant Design Procedure
        5.3.1 Stiffness Design Stage
        5.3.2 Strength Design Stage
        5.3.3 Ductility Design Stage
    5.4 Closing Comments

Comments